1. 벡터의 내적벡터의 내적 Dot Production 은 같은 차원의 두 벡터가 주어졌을 때,벡터를 구성하는 각 성분을 곱한 후 이들을 더해 스칼라를 만들어내는 연산이다.기호는 가운뎃점 ㆍ을 사용한다. 어떤 2차원 벡터 u (a, b), v (c, d) 가 있을 때1) 내적의 성질내적은 스칼라의 곱셈과 덧셈으로 구성되어 있으므로 교환법칙이 성립한다.결합 법칙은 성립하지 않는다.덧셈에 대해서 분배 법칙이 성립한다.서로 같은 벡터를 내적하면 벡터의 크기를 제곱한 결과가 나온다.내적의 성질은 모든 차원의 벡터에 대해서 동일하게 적용된다.2) 내적과 삼각함수와의 관계두 벡터 u, v가 있을 때, 두 벡터의 내적 값은 두 벡터 사잇각에 대한 cos 함수와 비례하는 특징을 가진다. 두 벡터 u, v의 사잇각을 세..